J an 2 00 5 Not all limit points of poles of the Padé approximants are obstructions for uniform convergence

نویسنده

  • Victor M. Adukov
چکیده

In the work it is shown that not all limit points of poles of the Padé approximants for the last intermediate row are obstructions for uniform convergence of the whole row to an approximable function. The corresponding examples are constructed. For some classes of meromorphic functions it is found under what conditions the limit point is not the obstruction for the uniform convergence of the last intermediate row.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. N A ] 2 5 N ov 2 00 4 On the Set of Uniform Convergence for the Last Intermediate Row of the Padé Table

Let a(z) be a meromorphic function having in the disk |z| < R precisely λ poles. In this work for the (λ−1)th row of the Padé table of a(z) the set of uniform convergence is explicitly obtained. The present note is a supplement to the previous work of the author (J. Approx. Theory, 123(2003), 160-207). In the theory of uniform convergence of the Padé approximants the principal question is if th...

متن کامل

Algebraic properties of robust Padé approximants

For a recent new numerical method for computing so-called robust Padé approximants through SVD techniques, the authors gave numerical evidence that such approximants are insensitive to perturbations in the data, and do not have so-called spurious poles, that is, poles with a close-by zero or poles with small residuals. A black box procedure for eliminating spurious poles would have a major impa...

متن کامل

A ug 2 00 7 Asymptotics of Hermite - Padé rational approximants for two analytic functions with separated pairs of branch points ( case of genus 0

We investigate the asymptotic behavior for type II Hermite-Padé approximation to two functions, where each function has two branch points and the pairs of branch points are separated. We give a classification of the cases such that the limiting counting measures for the poles of the Hermite-Padé approximants are described by an algebraic function h of order 3 and genus 0. This situation gives r...

متن کامل

Convergence of Rational Interpolants∗

The convergence of (diagonal) sequences of rational interpolants to an analytic function is investigated. Problems connected with their definition are shortly discussed. Results about locally uniform convergence are reviewed. Then the convergence in capacity is studied in more detail. Here, a central place is taken by a theorem about the convergence in capacity of rational interpolants to funct...

متن کامل

Padé Approximants in Complex Points Revisited

In 1976, Chisholm et al. 1 published a paper concerning the location of poles and zeros of Padé approximants of ln 1 − z developed at the complex point ζ : ln 1 − z ln 1 − ζ − ∑∞ n 1 1/n z − ζ/1 − ζ . They claimed that all poles and zeros of diagonal Padé approximants n/n interlace on the cut z ζ t 1 − ζ , t ∈ 1,∞ . Unfortunately, this result is only partially true, for poles. Klarsfeld remarke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005